We put these results together in table 3, under which we repeat for convenience table 2 in transposed form. Now the expected losses can be computed. We remark that a strategy is a function which assigns an action to an observation. The observation is a realization of a random variable which has a distribution dependent on 0. Consequently the action is a random variable too: a s(t). We now compute the action probabilities, i.e. for each strategy we find the probabilities to take ax or a2 when 0i is the state of nature and when 02 is the state of nature. We give two examples of this computation: The strategy si takes «1, whatever the observation may be. When 0i is the state of nature, the action ai is taken with probability 1, «2 with probability zero. When 02 is the state of nature the action «i is also taken with probability 1. The strategy s2 takes ax if h or fa is observed. If 61 is the state of nature, the probability of observing fa or fa is 0.3085 0.3830 0.691:5 (see table 3). If 02 is the state of nature, this probability is °-9545 0.0428 0.9973. If k is observed, we take <z2. The proba bility of observing fa is under 0X: 0.3085 and under 02: 0.0027. The results for all strategies are given in table 4. 128 00 0 t2 8-12 t* 12 0, 02 0.3085 0.9545 0.3830 0.0428 0.3085 O.OO27 Sl S 2 S3 *5 56 57 S« dy dy «1 dy a2 a2 a2 a2 ay ay «2 a2 ay ay a2 ax a2 a2 ay ay a2 Table of strategies TABLE 3. Probability to observe the different values of \t\ if 0 is the state of nature Si ay a2 0i I 0 02 I 0 54 ay a2 0i 0.6170 0.3830 02 0.9572 0.0428 S2 fll «2 0i O.69I5 O.3085 02 0-9973 6.0027 *5 ai a2 01 02 0.6915 0-0455 0.3085 0-9545 S3 «1 a2 0i O.3085 0.6915 02 0-9545 00455 S6 ai «2 01 02 0.3830 O.O428 O.617O O.9572

Digitale Tijdschriftenarchief Stichting De Hollandse Cirkel en Geo Informatie Nederland

Tijdschrift voor Kadaster en Landmeetkunde (KenL) | 1967 | | pagina 10